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Abstract

    General relativity allows for a mathematically equivalent version in which length changes
absorb the traditional changes in c.  This conjecture is deomonstrated for the special case of
the radial Schwarzschild metric.  Two size-change results obtained a decade ago in the
context of the equivalence principle – one relativistic, one quantum – are re-obtained in the
radial Schwarzschild metric.  Hence a previously neglected radial observable defined by
dℜ/dr = 1/(1–2m/r) determines physical distance.  Since dℜ/dt ≡ c, Max Abraham’s constant-
c postulate of 1912 is unexpectedly fulfilled.  The well-known infinite “radar distance“ of the
horizon of a Schwarzschild black hole therefore reflects an infinite distance.  An infinite
proper infalling time into black holes is a corollary.  Since the latter time is canonically finite,
an anomaly is encountered.  To help decide it, an independent second proof is sketched based
on a standing vertical light wave.  An added merely qualitative third proof involves the
Finkelstein diagram.  If the new result can be confirmed, finished black-hole horizons,
wormholes, Hawking radiation, charged black holes and singularities cease to exist in nature.
Quantum-supported linear and curvature-supported nonlinear features of spacetime can be
distinguished.  ElNaschie’s fractal E-infinity theory offers itself as an independent test bed.
(April 9, 2007, March 20, 2008)‘

-----------------------------------------------------------------------------------------------------------------

1. Introduction

    Einstein first introduced a height-dependent c (in a high tower on earth or equivalently an
ignited long rocket in outer space) in the context of the equivalence principle in 1911 [1].
This proposal caused grave concern on the part of his elder colleague Abraham who, after
having fully embraced Einstein’s special relativity, was reluctant to sacrifice the latter’s
central tenet of a globally constant speed of light c [2].  Einstein’s new axiom of a potential-
dependent c was instrumental to further progress and got eventually incorporated into general
relativity four years later, as is well known [3].

    The variable-c axiom has a familiar consequence in the Schwarzschild metric, which is the
single most important solution of the Einstein equation of 1915.  The “coordinate speed of
light“ c(r) is here a function of the distance parameter r:

                             c(r)   = )/21( rmc
dt

dr −⋅=  ,                                                                    (1)
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where 2m is the Schwarzschild radius (with 2m ≡ 2GM/c2, M the central mass, G Newton’s
gravitational constant and c the universal speed of light (cf. Foster and Nightingale [3], p.
129).  Eq.(1) states that the speed of light valid with respect to the distance parameter r, c(r),
becomes zero as r approaches the Schwarzschild radius 2m from above.

    In spite of its well-known lack of constancy relative to r, c is bound to remain at least
locally unchanged by virtue of Einstein‘s covariance postulate (which posits that locally, the
laws of nature must be everywhere the same including the speed of light).  That this constraint
is indeed fulfilled by Eq.(1) can be seen as follows:  Proper time τ is locally slowed down by
the factor (1–2m/r)1/2 relative to coordinate time t (since dτ = (1–2m/r)1/2dt;  [3], p. 127).  This
is the same factor by which the radial distance R is locally increased relative to coordinate
distance r (since dR = (1–2m/r)–1/2dr;  [3], p. 125).  The two local changes – the temporal and
the spatial one – taken together compensate for the change in c given by Eq.(1).  Indeed dR/dτ
= dR/dr ⋅ dt/dτ ⋅ dr/dt = (1–2m/r)–1 dr/dt ≡ c.

    The global change in c formally implicit in Eq.(1) conflicts with Abraham’s intuition.
Could it be that, contrary to appearances, Abraham’s postulate is actually fulfilled in the
Schwarzschild metric, and if so in general relativity at large?  The answer to this question is in
the positive as far as the radial Schwarzschild metric is concerned.  This surprise result is to
be demonstrated in the following along with some implications.

2. The size-change conjecture

    In 1998, an in principle well-known but rarely (if ever) mentioned relativistic fact was
independently spotted in the equivalence principle:  inequality of the two vertical radar
distances (down-up and up-down, respectively) in an accelerating rocket [4].  The method
used was the “WM-diagram.“  The two mirror-symmetric capital letters W and M stand for
light rays moving updown or downup twice, respectively (forming a symmetric XXXX
pattern).  The diagram illustrates that time intervals along the top and the bottom of the 4
concatenated X’s (that is, “upstairs“ and “downstairs“ in a vertically accelerating rocket)
interlock consistently with each other despite their unequal durations.  While this fact is well-
known in principle (compare the “Einstein synchronization“ of Rindler [5]), the pictorial
method – which grew out of a chaos-theoretic mapping proposal made by Dieter Fröhlich –
reveals a new fact:  relative size increase downstairs by the redshift factor observed from
upstairs.  This is because the vertical distance, when measured using light pulses from
upstairs, is exactly so much larger than when measured from downstairs.  Conversely, the
blueshift factor observed downstairs implies an equal relative size decrease upstairs by the
blueshift factor observed downstairs, which amounts to the same thing.  (The objection that
width appears unchanged from the respective other vantage point can be met by invoking
projective anisotropy.)  The relative size change explains the unequal vertical radar distances
found in the equivalence principle.  The latter are, by the way, easy to verify empirically using
a TV tower, a pocket laser, a mirror and a counter (Gerhard Schäfer, personal communication
2001). The size change result is, by the way, already implicit in a special-relativistic finding
of Walter Greiner‘s [6].1)

    In the same year 1998, Heinrich Kuypers came up with the idea to have a look, likewise in
the equivalence principle, at the gravitational Dopplershift of matter waves in order to see
how quantum mechanics fits in.  This allowed him to realize that, if photon mass downstairs
is reduced by the gravitational redshift factor as is well known [7], any mass on the same level



must be reduced by the same factor owing to local energy conservation [8,9].2) Hence
quantum mechanics predicts (via the de Broglie wave-length of matter waves and, more
specifically, the Bohr radius which is inversely proportional to electron mass) that the size of
every object downstairs is enlarged in proportion to its redshift [8,9].  This quantum
prediction coincides with the previous relativistic prediction in a kind of pre-established
harmony.

    The two 1998 observations were each made independently of Abraham’s conjecture.  A
priori  it appears infinitely unlikely to suspect a connection.  Or could it be that Einstein and
Abraham are reconciled by Fröhlich and Kuypers?  It is this outlandish conjecture which is to
be demonstrated in the following.  Since the “playground“ of the equivalence principle is no
longer sufficient, the Schwarzschild metric offers itself as the ballpark of choice.

3. Demonstration of the conjecture

3.1 Some well-known findings

    The Schwarzschild metric is the oldest explicit solution of the Einstein equation.  It was
already found in late 1915 by a friend of Einstein’s under unfavorable personal circumstances
(Karl Schwarzschild died soon thereafter).  The mentioned book by Foster and Nightingale
[3] will continue to be used in the following as a backdrop – with page numbers put in
brackets, like (p. 130), referring to their book.

    Just as it was the case before with the equivalence principle [4], the up-down and the down-
up distances measured by light sounding (“radar distances“) differ by the mutual redshift (or,
in the opposite direction, blueshift) factor also in the radial Schwarzschild metric.  This fact
deserves to be looked at in more detail.

    Firstly, the mutual redshift factor owes its existence to the unequal proper times valid
upstairs and downstairs.  “Proper time“ τ is, as already mentioned in the Introduction, at every
local r defined by

                                 dτ  =   (1–2m/r)1/2 dt                                                                             (2)

if t is the coordinate time (p. 127).

    Secondly, the “coordinate time difference“ ∆t between upstairs and downstairs depends on
the coordinate values of the outer (ro) and inner (ri) radial position, on the one hand, and the
local coordinate speed of light c(r) given by Eq.(1), on the other.  Integration of Eq.(1) if
written in the form dt = c–1(1–2m/r)–1dr, between ri and ro, yields the coordinate time
difference valid for a down-up (or equivalently up-down) light signal:

                                ∆t  =  ∫ −−o
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(p. 129).  Multiplication of this time interval by c formally generates a corresponding
distance:

                              c∆t  =  ∫ −−o
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This distance has no name up until now.  (Only the indefinite version of the same integral is
well-known under the name “ r*  “ in the Eddington-Finkelstein formalism [10], a fact that we
shall come back to below.)

    The distance given by Eq.(4) cannot be measured directly.  It can only be evaluated on
either end – where it is then automatically weighted by the local time-shrinking factor of
Eq.(2).  What comes out is the well-known “radar-sounding light distance“ (as Foster and
Nightingale call it [3], p. 130).  The latter reads, when evaluated from the upper end ro,

                            c∆to   =   dτo/dt ⋅ c∆t     =    (1–2m/ro)
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(p. 130).  One sees that this down-up radar distance – as it can be called – diverges (becomes
infinite) as ri approaches the Schwarzschild radius 2m from above.

    In corresponding fashion, the opposite radar distance c∆ti valid at the lower end ri is arrived
at.  It differs from the former only by the subscript (i instead of o) in the first bracket:

                             c∆ti  =   (1–2m/ri)
1/2 
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This up-down radar distance – as it can be called – unlike the former does not diverge when ri
(now the position of the observer) approaches the Schwarzschild radius 2m from above.

    The ratio between the two different radar distances, Eq.(5) and Eq.(6), is
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This ratio is the “WM result“ of reference [4] valid in the Schwarzschild metric.

    So much for some well-known facts in the radial Schwarzschild metric.  Only the
distinction made between “down-up“ and “up-down“ radar distance appears to be new.

3.2 Compatibility with the Fröhlich-Kuypers size change

    The described facts of the Schwarzschild metric can now be juxtaposed with the surprise
observation of Fröhlich and Kuypers – the redshift-proportional size-change principle – in
order to see how well the latter fits in or whether it creates an incompatibility at some point
which would then spell the end of the present approach.

    The new point heuristically to absorb into the Schwarzschild metric is the redshift-
proportional relative size increase downstairs predicted by Fröhlich and Kuypers in two



independent contexts.  Does this feature if hypothetically introduced contradict the accepted
facts in the Schwarzschild metric?  Surprisingly, the answer is no.

    To see this, it is first necessary to realize that the Schwarzschild metric already contains a
height-dependent change in size (which by the way likewise fails to show up in the transverse
direction owing to projective anisotropy when looked at from above or below).  This
canonical radial size increase reads, as already mentioned in the Introduction,

                              dR    =   (1–2m/r)–1/2dr                                                                             (8)

(p. 125).  After integration, this generates the so-called “radial distance“ between ri and ro:
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Note that this traditional radial distance does not diverge when ri approaches the
Schwarzschild radius 2m from above.  Indeed, of the 4 radial distances identified so far in the
Schwarzschild metric – Eqs.(4), (5), (6) and (9) –, only the first two diverge.

    However, the “intrinsic local size change“ dR, valid in the Schwarzschild metric with
respect to the local distance parameter r by virtue of Eq.(8), is not the end of the story in our
present context since there now possibly exists a new local size change – the one predicted by
the above-mentioned combined WM and de-Broglie argument.  This postulated new size
change is governed by the relative redshift or blueshift valid at the respective other radial
position.  Hence it is determined by the ratio of frequency shifts, Eq.(7), divided by the local
proper-time factor valid at the observing position ro by virtue of Eq.(2).  This yields the
predicted net factor
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for any object located at ri observed from ro>ri.  Thus, we have (writing r for ri in the brackett)

                               dρ   =  (1–2m/r)–1/2 dr                                                                              (10)

as our conjectured new local size change factor.

    The postulated new local size-change dρ of Eq.(10) has exactly the same form as the local
size-change dR of Eq.(8) above.  Therefore there are two possibilities open at this point:
Either the new size change factor of Eq,(10) is nothing but a new re-derivation of the old
factor of Eq.(8);  then the traditional radial distance R of Eq.(9) remains the only physically
relevant radial distance in the Schwarzschild metric.  Or both size change factors (the old
dR/dr and the new dρ/dr) contribute on an equal footing locally if the new size change of
Fröhlich and Kuypers is real.  In this case the resulting “effective local size change factor“
dℜ/dr is equal the product of the two individual factors named:
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                               dℜ  =   (1–2m/r)–1 dr .                                                                             (11)

This hypothetical new effective local size change factor generates a new distance integral:
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The new distance integral ∆ℜ (“ℜ-distance“) replaces the traditional distance integral ∆R of
Eq.(9) as the correct “radial distance“ – if the new Fröhlich-Kuypers size change factor is
added while everything else remains unchanged.

    Unexpectedly, Eq.(12) is identical to Eq.(4) above.  Thus nothing has been introduced in
effect as far as measured distances are concerned!  The above employed “roundabout way“ of
heuristically using two local size changes – the old Schwarzschild factor of Eq.(8) and the
hypothetical new Fröhlich-Kuypers factor of Eq.(10) – in order to explain the old radar
distance of Eq.(4) proves to be a perfectly legitimate option.  This option renders the
traditional position-dependent reduction of c of Eq.(1), which likewise leads to Eq.(4) (≡
Eq.12), redundant.  Both views make equal sense at first sight.  So one should let nature have
a word.  The new view if false should lead to predictions at variance with reality.  Is this the
case?

3.3 The Shapiro time delay

    The Shapiro time delay was introduced in 1964 by Shapiro [11] and independently by
Muhleman and Richley [12] as a testable counterintuitive implication of the Schwarzschild
metric (“fourth test of general relativity“).  They encountered much skepticism at first.  To
date, the underlying equation (Eq.3) is empirically confirmed in the solar system to an
accuracy of 2⋅10-5 [13].  The currently accepted interpretation is that time suffers a
counterintuitive delay while the radial distance R is covered and that this delay is predictably
caused by the slowing of the velocity of light c(r) near a gravitating object.

    But there now exists an alternative interpretation:  the new size change axiom of Eq.(11)
can be invoked.  Adopting this interpretation is equivalent to saying that it is “not a change in
c but a change in distance“ that has been measured.  This means that the two identical
distances, c∆t of Eq.(4) and ∆ℜ of Eq.(12), can both be re-named into a single distance,
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3.4 Abraham vindicated

    The newly obtained unique distance RA produces (after division by c) the very time delay
∆t familiar from Eq.(3) above (with ensuing radar distances Eqs.5 and 6).  The old local size



change factor of Eq.(8) valid in the Schwarzschild metric ceases to be alone since a new
factor, Eq.(10), has been brought in.

    That both factors are valid in the Schwarzschild metric (in the product of Eq.11) comes as a
surprise from the point of view of the equivalence principle.  Here it is not the new factor of
Eq.(10) which is surprising but the fact that it no longer stands alone in determining size in
the Schwarzschild metric due to the presence there of the old factor of Eq.(8).  This amounts
to a qualitative difference between the “curved“ Schwarzschild metric and the “flat“
equivalence principle.  Quantum mechanics continues to “see“ only the flat version and so do
mass and energy.  Only size (and with it distance) is determined by both factors.

    If we accept the new size change law (Eq.11) as being valid in the Schwarzschild metric:
what about Abraham’s hunch?  The new-old distance found (Eq.13) deserves to be given a
new name:  “Abraham distance“ – RA.  Why?  Because this distance (Eq.12≡Eq.4) formally
implies that c is constant over the whole trip!  This fact was already implicit in Eq.(4) above –
but our eyes were held at the time as it were since we did not yet have a good reason to take
the coordinate-time difference ∆t of Eq.(3) that seriously.

    The new “Abrahamian interpretation“ of Eq.(13) is equivalent to the standard interpretation
of the radial Schwarzschild metric – as far as predicted redshifts, time delays for light and any
resulting formal distances are concerned – yet with c globally constant.  Hence we can state
the following “ℜ theorem“:

Theorem:  In the radial Schwarzschild metric, global constancy of c holds true with respect
                  to the natural distance parameter ℜ, defined by  dℜ = (1–2m/r)-1dr.

The naturalness follows from the Fröhlich-Kuypers size-change.  The validity follows (using
Eqs.11 and 1) from the identity dℜ/dt = (1–2m/r)-1dr/[dr(1–2m/r)-1/c-1] ≡ c.3)

    A more general way to put the same result would be to speak of the “conservation of
longitudinal spacetime volume“ (longitudinal spacetime area) in the radial Schwarzschild
metric – and presumably general relativity at large.  In the present context, the formulation
that “Abraham’s dream“ is fulfilled for once in general relativity in the special case of the
radial Schwarzschild metric, is perhaps the most appropriate.

4. Consequences

4.1 First, the familiar side

    The unified picture arrived at does not change anything in the accepted facts.  Only on the
level of interpretation are there any consequences to expect.  One such interpretational
consequence is, nevertheless, quite tangible:

Corollary: The horizon of a Schwarzschild black hole has an infinite distance RA (≡ℜ) from
                   the outside.

This infinite-distance result does not really come as a surprise because the “radar distance“
(signal-return time multiplied by ½c) of the horizon is well-known to be infinite from above
by virtue of Eq.(5) as we saw ([3], p. 130).  In the present context, this familiar finding
acquires a subtle change of meaning, however:  The infinite radar distance is no longer an



“artifact“ of the change-in-c downstairs, as had to be assumed up until now, but the
consequence of a previously overlooked change-in-size downstairs.  According to the
achieved new semantics, the same distance thus is really infinite from above.  This conclusion
is in perfect agreement with the Abraham principle.  Everything appears harmonized for once.

4.2 A surprise secondary implication

    In spite of the harmony obtained, there exists a derived secondary implication which
appears virtually unacceptable:  Black holes can now no longer be reached in finite time – not
only by light with its infinite radar-sounding delay for which this fact is well known as we
saw (Eq.5 and Shapiro), but by any infalling object.  The result is so strong it even remains
true when the falling time is measured in terms of the proper time of the infalling object
itself!  For the relative distance is now “really infinite“ (RA is infinite for ri  ≡ 2m).  Hence the
above “change in semantics“ is more than a mere change of words for once:  it has tangible
physical consequences.  Since this cannot be the case by very definition, some previously
accepted physical facts are bound to have been in error!

    This statement amounts to an anomalous situation having been reached.  Hence the
anomalous “infinite proper infalling time“ merits an independent proof in terms of the
standard picture since the physics is bound to be invariant under a change of semantics.  If
such a proof were to be found, the accepted ways of deriving the contrary – dating back to
Oppenheimer and Snyder’s famous paper of 1939, cf. [14] – would lose credit.  The at first
sight more natural thing to do – to re-work the old equations themselves – would be
counterproductive, given that the pertinent mathematical  paths have all stood the test of time.
Only a round-about way – like the cat‘s around the hot mush – has any chance to succeed in
case there really is something out of kilter.  Such an alternative proof can tentatively be based
on the paradigm of a standing light wave (generated by two mutually opposite laser sources of
perfectly matching frequency and phase, cf. [15]).  A rough sketch goes as follows:

A standing light wave is assumed to be set up vertically between the horizon and the outside
world.  This can be achieved in principle:  two mutually opposite laser canons of differing
frequencies can be positioned upstairs and downstairs in such a way as to generate a standing
light wave in between them – if the frequency ratio matches the mutual redshift or blueshift
factor (Eq.7).  (If necessary, mediating “doubly open laser canons“ tuned to the locally
matching intermediary frequency can be inserted.)  In the extremal case – outside-to-horizon
– at stake, the frequency ratio between downstairs and upstairs approaches infinity.  In this
limit, the resulting “Jacobian ladder of light“ possesses an infinite number of rungs (standing
wave-crests).  This prediction is in accord with the accepted infinite radar distance (Eq.5).
While the locally valid distance between rungs differs widely – approaching zero for people
living near the horizon –, the distance between rungs is constant for a fictitious particle falling
at constant speed.  Note that according to the equivalence principle, a light wave sent down
from above retains its frequency in the upper frame in spite of its being progressively
shortened when arriving at – or passing by – a more downstairs position.  The same features-
conserving fact holds true for a constant-speed particle that is slower than a photon.
However, the speed of a falling ordinary particle is not constant but accelerating by definition.
The situation is exactly the same as it holds true for any other ladder of infinitely many equi-
spaced rungs – in special relativity.  In special relativity, an infinite number of equi-spaced
wave crests cannot be passed by in finite proper time – neither at constant speed nor at
constant acceleration nor (as here) under an increasing but flattening-out acceleration;
compare Eq.(5.24) of French [16] with the pertinent classical exercise (20.2) of Greiner‘s



book ([6], p. 168).  This result carries over via the equivalence principle.  Hence the total
proper infalling time is infinite.  (Q.e.d.) 4)

    The result just sketched is in accord with the infinite distance of Eq.(13) above.  Still, since
the time-honored reigning consensus holds that the Schwarzschild metric implies a finite
proper infalling time (cf. [3], p. 139, or [14], p. 851), a third, only qualitative, argument
appears desirable to have as well:

Pictures come to mind at this point.  More specifically, the fact that the “coordinate speed“ of
an infalling body, v(r) = dr/dt ([3], p. 143), needs to be constantly adjusted to the local
“coordinate speed of light“ c(r) = dr/dt of Eq.(1).  This “consistency check“ is particularly
vital at coordinate values close to the horizon where the radial light cones become more and
more compressed around the curves of infalling matter near the asymptotic vertical line r =
2m of the horizon, in the traditional r,t diagrams.  While a detailed account of the local
situation is not possible in such drawings, there is one exception:  the Finkelstein diagram
([17], p. 152).  Here, the ingoing light rays are straight 45-degree ascending lines that,
nevertheless, are subject to a (graphically invisible) exponential scaling in the neighborhood
of the vertical line r = 2m.  The same applies to the almost parallel slightly less slanted
particle rays.  Since in this diagram, r*+t is plotted versus the horizontal r axis ([17], p. 150),
the Finkelstein diagram is compatible with Eq.(13) above.  For r* = RA in this diagram (as
mentioned above following Eq.4).  Although this pictorial argument is only qualitative, as
ordered, it can possibly even be made quantitative (q.e.d.).

4.3 Consequences of the new unreachability

    Firstly:  If the horizon cannot be reached in finite time by any object, black holes also can
no longer even form in finite time.  For a horizon that cannot be reached in finite time can also
not arise in finite time.  (What precisely happens when just the “last iota“ of mass remains to
be added to an almost-critical homogeneous collection of masses, represents an interesting
selforganization-type question;  note that action-at-a-distance cannot be invoked in this
context.)  From the nonexistence of a finished horizon it then follows that Hawking’s
beautiful evaporation result [18], which relies on a finished horizon, gets infinitely delayed,
too, and hence ceases to be physically effective.  This rule remains valid for mini-black holes
(despite their greater tunneling capabilities) by virtue of Kuypers‘s quantum-scaling result.

    Secondly:  Light cones cease to be compressible in the radial direction of the
Schwarzschild metric.  This fact is bound to have further consequences – in the context of
time machines and other very general implications of the Einstein equation (like gravitational
waves and rotating frames).  For example, wormhole-based time machines [19] depend on the
horizon being reachable in finite time.  They therefore are automatically ruled out in the
Abraham picture.  Gödel time machines, on the other hand, remain possible (compare the
beautiful drawing in [17], p. 169).  This fact notwithstanding, a cautioning remark recently
offered by a youngster should perhaps not go unmentioned (“Time machines cannot exist
given the infinite duration of the future.“  Why?  “They would be all over the place by now.“
Unless the percentage of time travellers that aren’t infinitely careful about camouflage is
zero.  “Yes – but this is unthinkable!“).

4.4 Main open task

    The revived Abraham proposal of a universal c amounts to a surprise implication of the
radial Schwarzschild metric.  Is it possible that alternative metrics derived from the Einstein



equation will teach otherwise?  The mentioned qualitative fit with the Eddington-Finkelstein
metric speaks in favor of reconciliation.  Therefore, the next open task to solve reads:  How
do the field equations themselves look like if “size, not c“ depends on the gravitational
potential?

5. Discussion

   A simple new result valid in a subcase of the Schwarzschild metric was presented.  “Radial
spacetime-volume conservation“ is one possible way to put it.  The slower the time locally,
the larger space locally.  The stronger the magnification of time, the stronger the
magnification of space:  hence “space-over-time“ is constant – c.  Max Abraham would have
liked this result.  A first glimpse of how his mind worked I got from Valérie and Christophe
Letellier at the university of Rouen three years ago.

    The result presented is nothing but a beginning.  Nonradial directions in the Schwarzschild
metric have yet to be considered.  Angular momentum has to be introduced next (Kerr
metric).  And the full Einstein equation is waiting to be considered thereafter.  Even more
sophisticated higher-dimensional analogous equations [20,21] are bound to come next.

    What will remain if the main result can be confirmed?  Four results are likely to persist:
1) Nonexistence of finished horizons (due to an infinite proper infalling time) and hence
    nonexistence of finished black holes, so that only “almost black holes“ [22] remain.
2) Nonexistence of Hawking radiation.
3) Nonexistence of any spacetime elements beyond the horizon (including singularities).
4) Nonexistence of charged almost black holes.

    These four predictions are surprising because they each fly in he face of accepted wisdom.
If they hold true in the radial Schwarzschild metric, analogous new results are bound to be
found in the four less restricted cases mentioned.  It hence would be nice to have a simple
method to falsify the above result.  An independent approach to quantum spacetime was
found by ElNaschie [23], cf. [24].  It will be instructive to see whether part or all of the above
predictions can be confirmed or disproved in this independent methodology.

    To conclude, a so-called “variantological approach“ to spacetime physics has been
presented.  That is to say, a fictitious return to an earlier level of sophistication was
heuristically adopted [25].  Whether the presented approach can stand the test of time is open.
Possibly – or hopefully –, it can be falsified soon since its results challenge too many accepted
facts in the modern fabric of spacetime.  A priori speaking, the probability that the two simple
insights of Fröhlich and Kuypers can turn back the wheel of history to a time when Einstein
and Abraham fought their friendly battle of giants is negligibly small.  Where precisely is the
error located?

Acknowledgments

    I thank Dieter Fröhlich and Heinrich Kuypers for their fundamental contributions and
Jürgen Parisi, Frank Kuske, Martin Pfaff, Valentin Letellier, Walter Greiner, Ken Ford,
Theodor Hänsch, René Thomas, Michael Baune, Michael Maschke, Bill Seaman, Jonathan
Kemp, Martin Howse, Martin Lübcke and Peter Weibel for discussions and Jörg Frauendiener
for vital criticism.  Michelangelo Mangano provided late-hour encouragement.  For J.O.R.



Footnotes

1)The size change can also be derived from the twin-clocks  paradox of special relativity:
  Conservation of angular momentum implies that the “younger clock“ (if implemented as a
  frictionless rotator) must have been proportionally enlarged while making its fewer turns.
  Cf. [8,9] for an analogous implication of the gravitational twin paradox.

2)The same fact was mentioned in passing by Werner Israel [26]:  Quote:  “the gravitational
   (..) redshift factor (..) recalibrates locally measured mass and work to energies available to
   an observer at infinity.“

3)Note, by the way, the interesting identity dℜ/dt ≡ dR/dτ (see Introduction).

 4)But see Added in proof.
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Added in proof:  reception, erratum, confirmation

Reception.  With several thousand downloads, the above paper is one of the most-read in
general relativity.  An early all-out criticism by the prestigious Einstein Institute [27] got
subsequently replaced by a toned-down version in late July [28].  The latter no longer
repeated the claims contained in the first that the Abraham paper contradicted both general
relativity and experiment.  The only relevant criticism that remained was a prediction:  that if
the gothic-R theorem were to be extended from the radial Schwarzschild metric to the full
metric, it would prove incompatible with celestial mechanics.  Even this conditional
prediction had already been laid to rest by the successful re-formulation of the full
Schwarzschild metric in terms of the gothic-R variable, achieved by an anonymous author
signing with “Ich“ [29] (see his Eq.17).  No further claim at falsification has been made to my
knowledge.  All the high-publicity claims at falsification made since by high-ranking
institutions (like KET, CERN and two national parliamentary bodies) rely on the authority of
Nicolai’s first paper and are, therefore, baseless as far as I can see.  So are the ill-fated
experimental decisions made in their wake.

Erratum.  The merits of the already mentioned anonymous author do not stop here.  He also
succeeded in finding a first error in the above paper – not in the gothic-R theorem proper but
in the added conjecture (erroneously labeled “Q.e.d.“) that the proper infalling time were
infinite.  This conjecture is false:  the proper infalling time is finite [30].  The reasoning is
based on the Rindler metric which is a valid approximation to the Schwarzschild metric
[5,31].  The new result at first sight comes as a surprise from the point of view of the gothic-R
theorem since the infinite distance implicit in the latter cannot be covered in finite proper time
by definition – unless luminal observer speeds are involved.   This appears absurd at first sight



since observers are massive bodies and massive bodies cannot reach luminal speeds in finite
time.  Surprisingly, Ich’s result goes hand in hand with a corollary that implies exactly this.

Confirmation.  The new confirmative corollary follows from the Rindler metric.  Since the
Rindler metric involves only special relativity, it can be fully understood in terms of a 2-D
Minkowski diagram (the familiar x,t frame of special relativity).  The Rindler metric – if I
may dwell on it a bit more – refers to a long rocket in constant acceleration in outer space,
with earth‘s gravity (1 g) reproduced at the tip.  The full rocket consists of many segments
each carrying its own pair of boosters on the outside.  (Picture many solid hollow cylinders
pairwise connected by a rubber tube.)  In the x,t plane, the trajectories of all segments come to
lie in between t = + x (right-hand part of first bisector) and t = – x (second bisector).  This
quarter of the full Minkowski plane is called the “Rindler wedge.“  Inside the wedge, we have
our 1-light-year-long rocket, momentarily located motionless along the x-axis while
accelerating all along at at full blast while stretching from x = 0 (bottom) to x = 1 (tip).  In the
x,t plane, the trajectory of the tip then rises up vertically to gently bear right along a curved
line in the form of a half-hyperbola that asymptotically approaches the first bisector to
asymptotically reach it at t = x = ∞ .  The lower (past) part of the same trajectory does the
same thing reflected downwards, approaching the second bisector in negative infinite time.
(This means, physically speaking, that the constant acceleration is superimposed onto a
constant negative, initially at t = – ∞  luminal, speed.)  The more inner segments of the rocket
(x < 1 on the x-axis) all do the same thing along proportionally downscaled full hyperbolas
having a correspondingly larger constant acceleration each (g/x locally).  This principle
continues right down to the 90-degree angle at x = 0 (the origin) where the acceleration
becomes infinite (g/0).  The assumed gradient in accelerations is necessary in order for the
rocket to remain connected over time – an accepted if paradoxical fact in special relativity [5].
It follows that the intra-rocket times (“rocket tip times“) T remain definable indefinitely – all
along straight lines through the origin.  The bundle of these “T times“ ranges, from T = – ∞
at slope – 1, via T = 0 at slope zero, to T = + ∞  at slope = + 1 [5].  All T-times are on the
same footing, that is, can each be identified with the x-axis on shifting the initial condition by
simply “scrolling up“ or “scrolling down,“ respectively.

    Now the two results announced.  First, the finite proper infalling time result [30]:  The
internal observer at the tip of the rocket (at x = 1 and t = 0) lets go of his handle and simply
stays put while moving up in time t along the x = 1 vertical.  He then simultaneously is
“falling“ freely inside the rocket – so as to leave it through an opening in the bottom at t = 1
(1 year) at the point x = t = 1 while the rocket’s bottom departs from him at the speed of light.
He at this point has effectively “fallen“ through the whole length of the rocket in 1 year of his
proper time.

    Second, the new luminal-speeds result:  To best see it, we assume for starters that the hole
in the tail had been plugged by a trampoline (the asssumption can be dropped later).  The
coasting passenger – if resilient enough – then bounces back all the way up toward the tip in
another year of his proper time.  In the Rindler diagram, this rebouncing trajectory is again a
straight line:  starting at the point x = t = 1, it continues along the first bisector in coincidence
with the latter so as to let the jumper re-catch his handle, which contimued along the curved
hyperbola of the rocket‘s tip, at x = t = ∞ .

    That is all.  One sees that the two straight legs of the observer’s trip are mutually equivalent
(except for orientation in time).  For it is possible to “scroll down“ the initial time T when the
observer lets go of his handle, all the way down from T = 0 (asumed so far) to T = – ∞ .  In
the new equivalent picture, the observer reaches the trampoline, not at x = t = 1 but rather at x



= t = 0 (origin).  This symmetric picture reveals that during either half trip (the two being
mirror images of each other), an infinite distance in outer space is covered by the observer –
in finite proper time!  Hence there always exists an appropriately chosen frame in which an
infinite distance is being bridged by the falling (or rebouncing) observer in finite proper time.

    This new result is surprising since luminal speeds of massive bodies had no place in
physics up until now.  The reason they are a reality lies in the free choice of frames that is the
hallmark of the Rindler metric, the above “scrolling operation.“  For we can always make sure
that the “arriving event“ at the bottom of the rocket (which is the horizon [31]) coincides with
the origin of the metric (the 0,0 foot point of the Rindler wedge).  This point can be reached
from inside the wedge (or be left into the wedge, respectively) only along one of the two 45-
degree trajectories, that is, along luminal trajectories coincident with one of the wedge‘s
boundaries.

    This fact – that the origin of the Rindler metric is “nonsingular“ – comes as a surprise.
Recall that the bottom of the rocket was factually reached by our first “falling“ observer on
his stepping out into the light from the hole in the rocket’s bottom, at x = t = 1.  This fact [30]
now also means that a luminal speed is accessible to a falling observer or particle inside the
Rindler metric.  But cannot such a speed only be reached after an infinite period of constant
acceleration by definition?  This is correct.  Amazingly, both seemingly contradictory facts
are mutually compatible for once.  For the waiting time under permanent constant
acceleration inside the rocket, is infinite:  The handle (or a companion sitting on the
neighboring seat) has to wait upstairs an infinite period of time under constant acceleration,
bridging an infinite distance in outer space in the process, before being at last reunited with
the back-bouncing, youthful, observer.

    More abstractly speaking, the “scrolling operation“ includes the two 45-degree singular
limiting cases – with their luminal speeds – as effective nonsingular cases.  This mathematical
finding is amenable to a deeper (differential-topological) explanation.  Here, it suffices to note
that such a situation – that the singular limits are nonsingular – is unheard of in physics.  This
fact gives the Rindler metric and its close relative, the Schwarzschild metric, a unique place in
nature.

    What does the effective infinite intra-rocket (and extra-rocket) distance found mean?  It
means that a well-known result possesses a new corollary.  So far, it was known that photonic
Hawking radiation by definition takes zero proper time to emerge from the horizon after
having bridged the whole (infinite) gothic-R distance and now, material Hawking radiation
analogously takes a finite proper time to come out.  Similarly light takes an infinite external
time to come out as we saw in the paper and now, material particles take a longer (twice as
long) infinite outside time to come out across the whole gothic-R distance.  Again, we only
have reproduced a self-evident fact one feels.

    Nevertheless the (now trivial) prediction of an infinite “emerging time“ because of an
infinite distance to be covered from the horizon, is what gave the above paper its worldwide
attention.  For this prediction implies that microscopic black holes generated on earth cannot
evaporate in finite time – and hence put the planet at risk if earth-bound.  In this way, an
ethical dimension got suddenly attached to a pure-physics result.  This dimension was,
interestingly, not seen at the time of writing the paper but was the merit of a relativist
colleague who when recommending publication jokingly wondered whether there could not
be repercussions on the “LHC“ experiment.  Although I had never heard of the latter, the
remark eventually triggered a vain attempt at defusing the joke.  When it failed, a more



serious attempt followed so it almost became a sport to hunt for a more sophisticated
argument in order to defuse the joke.  Each floundered for a different reason so that a vague
hunch of a danger-conserving principle being at work formed – that all the uncanny failures
may be non-coincidental.  The suspicion turned tangible when the final unsuccessful attempt
at giving the all clear had been communicated to CERN in May and published in July [32]:
neutron stars seem to possess a special quantum protection against natural, cosmic ray-borne,
very fast analogs to any miniblack holes potentially created on earth (superfluidity was the
likely culprit).  Eventually the idea of a joke played by nature on humankind – that the
artificial slowness of human-made analogs could be a curse – befell the whole planet on
September 10 when more than 500 newspapers across the globe referred to it in one way or
the other.  The joke still waits to be defused.  Thinking twice (by no longer opposing the
safety conference publicly demanded on April 18 [33]) remains an option to date following
the felicitous fehlleistung that occurred at CERN on September 20.  The whole globe is
grateful for the second chance at falsification granted to it.  Letting an idea die is always the
less costly option according to Karl Popper.
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Christophe Letellier and Peter Kloeden for discussions and Andy Hilgartner, Artur Schmidt,
and Kensei Hiwaki for stimulation.  For J.O.R. 12/31/08.


